30 research outputs found

    An Empirical Analysis on Cost Efficiency and Determinants of Commercial Banks in China

    Get PDF
    Abstract During the period 2009-2014, under the influence of the Belt and Road Initiative, China’s new normal economy and the stock market turbulence, the cost efficiency of Chinese commercial banks is fluctuated greatly. In this study, the cost efficiency of 100 commercial banks operating in China was evaluated by using SFA method. The mean cost efficiency score ranges from 59.34% to 97.78%. Then, by employing the Tobit regression model to analyze factors of the cost efficiency. ROAA has a negative impact on the cost efficiency and bank size has no significant impact on the cost efficiency. Key words: the cost efficiency, China commercial banks, SFA metho

    Related-Tweak Statistical Saturation Cryptanalysis and Its Application on QARMA

    Get PDF
    Statistical saturation attack takes advantage of a set of plaintext with some bits fixed while the others vary randomly, and then track the evolution of a non-uniform plaintext distribution through the cipher. Previous statistical saturation attacks are all implemented under single-key setting, and there is no public attack models under related-key/tweak setting. In this paper, we propose a new cryptanalytic method which can be seen as related-key/tweak statistical saturation attack by revealing the link between the related-key/tweak statistical saturation distinguishers and KDIB (Key Difference Invariant Bias) / TDIB (Tweak Difference Invariant Bias) ones. KDIB cryptanalysis was proposed by Bogdanov et al. at ASIACRYPT’13 and utilizes the property that there can exist linear trails such that their biases are deterministically invariant under key difference. And this method can be easily extended to TDIB distinguishers if the tweak is also alternated. The link between them provides a new and more efficient way to find related-key/tweak statistical saturation distinguishers in ciphers. Thereafter, an automatic searching algorithm for KDIB/TDIB distinguishers is also given in this paper, which can be implemented to find word-level KDIB distinguishers for S-box based key-alternating ciphers. We apply this algorithm to QARMA-64 and give related-tweak statistical saturation attack for 10-round QARMA-64 with outer whitening key. Besides, an 11-round attack on QARMA-128 is also given based on the TDIB technique. Compared with previous public attacks on QARMA including outer whitening key, all attacks presented in this paper are the best ones in terms of the number of rounds

    Landslide Surface Displacement Prediction Based on VSXC-LSTM Algorithm

    Full text link
    Landslide is a natural disaster that can easily threaten local ecology, people's lives and property. In this paper, we conduct modelling research on real unidirectional surface displacement data of recent landslides in the research area and propose a time series prediction framework named VMD-SegSigmoid-XGBoost-ClusterLSTM (VSXC-LSTM) based on variational mode decomposition, which can predict the landslide surface displacement more accurately. The model performs well on the test set. Except for the random item subsequence that is hard to fit, the root mean square error (RMSE) and the mean absolute percentage error (MAPE) of the trend item subsequence and the periodic item subsequence are both less than 0.1, and the RMSE is as low as 0.006 for the periodic item prediction module based on XGBoost\footnote{Accepted in ICANN2023}

    FaFCNN: A General Disease Classification Framework Based on Feature Fusion Neural Networks

    Full text link
    There are two fundamental problems in applying deep learning/machine learning methods to disease classification tasks, one is the insufficient number and poor quality of training samples; another one is how to effectively fuse multiple source features and thus train robust classification models. To address these problems, inspired by the process of human learning knowledge, we propose the Feature-aware Fusion Correlation Neural Network (FaFCNN), which introduces a feature-aware interaction module and a feature alignment module based on domain adversarial learning. This is a general framework for disease classification, and FaFCNN improves the way existing methods obtain sample correlation features. The experimental results show that training using augmented features obtained by pre-training gradient boosting decision tree yields more performance gains than random-forest based methods. On the low-quality dataset with a large amount of missing data in our setup, FaFCNN obtains a consistently optimal performance compared to competitive baselines. In addition, extensive experiments demonstrate the robustness of the proposed method and the effectiveness of each component of the model\footnote{Accepted in IEEE SMC2023}

    Probabilistic Related-Key Statistical Saturation Cryptanalysis

    Get PDF
    The related-key statistical saturation (RKSS) attack is a cryptanalysis method proposed by Li et al. at FSE 2019. It can be seen as the extension of previous statistical saturation attacks under the related-key setting. The attack takes advantage of a set of plaintexts with some bits fixed, while the other bits take all possible values, and considers the relation between the value distributions of a part of the ciphertext bits generated under related keys. Usually, RKSS distinguishers exploit the property that the value distribution stays invariant under the modification of the key. However, this property can only be deterministically verified if the plaintexts cover all possible values of a selection of bits. In this paper, we propose the probabilistic RKSS cryptanalysis which avoids iterating over all non-fixed plaintext bits by applying a statistical method on top of the original RKSS distinguisher. Compared to the RKSS attack, this newly proposed attack has a significantly lower data complexity and has the potential of attacking more rounds. As an illustration, for reduced-round Piccolo, we obtain the best key recovery attacks (considering both pre- and post-whitening keys) on both versions in terms of the number of rounds. Note that these attacks do not threaten the full-round security of Piccolo

    Related-Tweakey Impossible Differential Attack on Reduced-Round SKINNY-AEAD M1/M3

    Get PDF
    SKINNY-AEAD is one of the second-round candidates of the Lightweight Cryptography Standardization project held by NIST. SKINNY-AEAD M1 is the primary member of six SKINNY-AEAD schemes, while SKINNY-AEAD M3 is another member with a small tag. In the design document, only security analyses of their underlying primitive SKINNY-128-384 are provided. Besides, there are no valid third-party analyses on SKINNY-AEAD M1/M3 according to our knowledge. Therefore, this paper focuses on constructing the first third-party security analyses on them under a nonce-respecting scenario. By taking the encryption mode of SKINNY-AEAD into consideration and exploiting several properties of SKINNY, we can deduce some necessary constraints on the input and tweakey differences of related-tweakey impossible differential distinguishers. Under these constraints, we can find distinguishers suitable for mounting powerful tweakey recovery attacks. With the help of the automatic searching algorithms based on STP, we find some 14-round distinguishers. Based on one of these distinguishers, we mount a 20-round and an 18-round tweakey recovery attack on SKINNY-AEAD M1/M3. To the best of our knowledge, all these attacks are the best ones so far

    Cryptanalysis of SPEEDY

    Get PDF
    SPEEDY is a family of ultra-lightweight block ciphers designed by Leander et al. at CHES 2021. There are three recommended variants denoted as SPEEDY-rr-192 with rr∈{5,6,7}. All of them support the 192-bit block and the 192-bit key. The main focus during its design is to ensure hardware-aware low latency, thus, whether it is designed to have enough security is worth to be studied. Recently, the full-round security of SPEEDY-7-192 is announced to be broken by Boura et al. at EUROCRYPT 2023 under the chosen-ciphertext setting, where a round-reduced attack on SPEEDY-6-192 is also proposed. However, no valid attack on SPEEDY-5-192 is given due to its more restricted security parameters. Up to now, the best key recovery attack on this variant only covers 3 rounds proposed by Rohit et al. at AFRICACRYPT 2022. In this paper, we give three full-round attacks on SPEEDY-7-192. Using the divide-and-conquer strategy and other new proposed techniques, we found a 5.5-round differential distinguisher which can be used to mount the first chosen-plaintext full-round key recovery attack. With a similar strategy, we also found a 5-round linear distinguisher which leads to the first full-round attack under the known-plaintext setting. Meanwhile, the 5.5-round differential distinguisher also helps us slightly improve the full-round attack in the chosen-ciphertext setting compared with the previous result. Besides, we also present a 4-round differential attack on SPEEDY-5-192, which is the best attack on this variant in terms of the number of rounds so far. A faster key recovery attack covering the same rounds is also given using a differential-linear distinguisher. Both attacks cannot threaten the full round security of SPEEDY-5-192

    STP Models of Optimal Differential and Linear Trail for S-box Based Ciphers

    Get PDF
    Automatic tools have played an important role in designing new cryptographic primitives and evaluating the security of ciphers. Simple Theorem Prover constraint solver (STP) has been used to search for differential/linear trails of ciphers. This paper proposes general STP-based models searching for differential and linear trails with the optimal probability and correlation for S-box based ciphers. In order to get trails with the best probability or correlation for ciphers with arbitrary S-box, we give an efficient algorithm to describe probability or correlation of S-Box. Based on the algorithm we present a search model for optimal differential and linear trails, which is efficient for ciphers with S-Boxes whose DDTs/LATs contain entities not equal to the power of two. Meanwhile, the STP-based model for single-key impossible differentials considering key schedule is proposed, which traces the propagation of values from plaintext to ciphertext instead of propagations of differences. And we found that there is no 5-round AES-128 single-key truncated impossible differential considering key schedule, where input and output differences have only one active byte respectively. Finally, our proposed models are utilized to search for trails of bit-wise ciphers GIFT-128, DES, DESL and ICEBERG and word-wise ciphers ARIA, SM4 and SKINNY-128. As a result, improved results are presented in terms of the number of rounds or probabilities/correlations

    An Empirical Analysis on Cost Efficiency and Determinants of Commercial Banks in China

    No full text
    Abstract During the period 2009-2014, under the influence of the Belt and Road Initiative, China’s new normal economy and the stock market turbulence, the cost efficiency of Chinese commercial banks is fluctuated greatly. In this study, the cost efficiency of 100 commercial banks operating in China was evaluated by using SFA method. The mean cost efficiency score ranges from 59.34% to 97.78%. Then, by employing the Tobit regression model to analyze factors of the cost efficiency. ROAA has a negative impact on the cost efficiency and bank size has no significant impact on the cost efficiency. Key words: the cost efficiency, China commercial banks, SFA metho

    Related-Tweak Statistical Saturation Cryptanalysis and Its Application on QARMA

    No full text
    Statistical saturation attack takes advantage of a set of plaintext with some bits fixed while the others vary randomly, and then track the evolution of a non-uniform plaintext distribution through the cipher. Previous statistical saturation attacks are all implemented under single-key setting, and there is no public attack models under related-key/tweak setting. In this paper, we propose a new cryptanalytic method which can be seen as related-key/tweak statistical saturation attack by revealing the link between the related-key/tweak statistical saturation distinguishers and KDIB (Key Difference Invariant Bias) / TDIB (Tweak Difference Invariant Bias) ones. KDIB cryptanalysis was proposed by Bogdanov et al. at ASIACRYPT’13 and utilizes the property that there can exist linear trails such that their biases are deterministically invariant under key difference. And this method can be easily extended to TDIB distinguishers if the tweak is also alternated. The link between them provides a new and more efficient way to find related-key/tweak statistical saturation distinguishers in ciphers. Thereafter, an automatic searching algorithm for KDIB/TDIB distinguishers is also given in this paper, which can be implemented to find word-level KDIB distinguishers for S-box based key-alternating ciphers. We apply this algorithm to QARMA-64 and give related-tweak statistical saturation attack for 10-round QARMA-64 with outer whitening key. Besides, an 11-round attack on QARMA-128 is also given based on the TDIB technique. Compared with previous public attacks on QARMA including outer whitening key, all attacks presented in this paper are the best ones in terms of the number of rounds
    corecore